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Abstract 31 

The increasing availability of high-quality remote sensing data and advanced technologies have 32 

spurred land cover mapping to characterize land change from local to global scales. However, 33 

most land change datasets either span multiple decades at a local scale or cover limited time over 34 

a larger geographic extent. Here, we present a new land cover and land surface change dataset 35 

created by the Land Change Monitoring, Assessment, and Projection (LCMAP) program over 36 

the conterminous United States (CONUS). The LCMAP land cover change dataset consists of 37 

annual land cover and land cover change products over the period 1985-2017 at 30mresolution 38 

using Landsat and other ancillary data via the Continuous Change Detection and Classification 39 

(CCDC) algorithm. In this paper, we describe our novel approach to implement the CCDC 40 

algorithm to produce the LCMAP product suite composed of five land cover and five land 41 

surface change related products. The LCMAP land cover products were validated using a 42 

collection of ~ 25,000 reference samples collected independently across CONUS. The overall 43 

agreement for all years of the LCMAP primary land cover product reached 82.5%. The LCMAP 44 

products are produced through the LCMAP Information Warehouse and Data Store (IW+DS) 45 

and Shared Mesos Cluster systems that can process, store, and deliver all datasets for public 46 

access. To our knowledge, this is the first set of published 30 m annual land cover and land cover 47 

change datasets that span from the 1980s to the present for the United States. The LCMAP 48 

product suite provides useful information for land resource management and facilitates studies to 49 

improve the understanding of terrestrial ecosystems and the complex dynamics of the Earth 50 

system. The LCMAP system could be implemented to produce global land change products in 51 

the future.   52 
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1 Introduction 61 

 62 

The characteristics of land surface fundamentally connect with the functioning of Earth’s 63 

terrestrial surface. Changes in land cover and land surface are one of the greatest and most 64 

immediate influences on the Earth system and these changes will continue in association with a 65 

surging human population and growing demand on land resources (Szantoi et al., 2020). Changes 66 

in land cover and ecosystems and their implications for global environmental change and 67 

sustainability are major research challenges for developing strategies to respond to ongoing 68 

global change while meeting development goals (Turner II et al., 2007). Unknowns related to the 69 

spatial extent and degrees of impacts of anthropogenic activities on natural systems and 70 

strategies to respond to ongoing global change hinder efforts to overcome sustainability 71 

challenges (Erb et al., 2017; Reid et al., 2010). An improved understanding of the complex and 72 

dynamic interactions between the various Earth system components, including humans and their 73 

activities, is critical for policymakers and scientists (Foley, 2005; Foley et al., 2011). To fully 74 

understand these processes and monitor these changes, accurate and frequently updated land 75 

cover information is essential for scientific research and to assist decision makers in responding 76 

to the challenges associated with competing land demands and land surface change.  77 

Satellite observations have been used to observe the Earth’s surface and to characterize land 78 

cover and change from local to global scales. Remote sensing data allows us to obtain 79 

information over large areas in a practical and accurate manner. With advanced technologies and 80 

accumulating satellite data, countries and regions have produced multi-spatial and multi-81 

temporal resolution land cover products (Chen et al., 2015; Gong et al., 2020; Hansen, 2013; 82 

Homer et al., 2020; Li et al., 2020). A variety of land change mapping has been carried out to 83 

produce land cover and change products in the United States. Among these efforts are the widely 84 

known National Land Cover Database (NLCD) products. NLCD has provided comprehensive, 85 

general-purpose land cover mapping products at 30-m resolution since 2001 in the United States, 86 

and the products have been published and updated across more than a decade (Homer et al., 87 

2020). NLCD provides Anderson Level II land cover classification (Anderson, 1976) for the 88 

conterminous United States (CONUS) at approximately 2–3-year intervals. Other national-scale 89 

mapping projects focus on specific land cover themes. Among these are the Landscape Fire and 90 

Resource Management Planning Tools (LANDFIRE)   (Picotte et al., 2019), which maps 91 

https://doi.org/10.5194/essd-2021-202

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 August 2021
c© Author(s) 2021. CC BY 4.0 License.



4 

 

vegetation and fuels in support of wildfire management, and the Cropland Data Layer (Boryan et 92 

al., 2011) generated by the National Agricultural Statistics Service (NASS) of the United States 93 

Department of Agriculture (USDA). Due to the need to incorporate data from neighboring years, 94 

as well as extensive post-processing, ancillary dataset dependencies, and analyst-supported 95 

refinement, release dates for both LANDFIRE and NLCD products are typically several years 96 

subsequent to the nominal map year. Other products including national urban extent change and 97 

vegetation phenology data are available (Li et al., 2019; Li et al., 2020). These projects vary in 98 

how land change information is incorporated or expressed across product releases. Continuous 99 

data stacks allow for an increase in input features for land cover classification. Frequent data also 100 

provides the opportunity for near-real time change monitoring with frequently updated image 101 

acquisitions. The availability of land change information has led to approaches that attempt to 102 

monitor surface properties continuously through time. Such approaches have several advantages 103 

over traditional image processing techniques based on small numbers of images (Bullock et al., 104 

2020; Zhu and Woodcock, 2014b).  105 

Leveraging the increasingly massive amount of openly available, analysis-ready data products 106 

into the generation of operational land cover and land change information has been described as 107 

the new paradigm for land cover science (Wulder et al., 2018). The approach, which intended to 108 

use all available medium resolution remotely sensed data from the 1980s to the present, opened a 109 

door for the scientific community to integrate time series information to improve change 110 

detection and land cover characterization in a robust way. Furthermore, change events, when 111 

combined with knowledge of ecology settings or anticipation of a given process post-change, can 112 

accommodate consistent change observations and characterization of land cover. For example, 113 

forest areas that are cleared by wildfire or harvest activities typically transfer to non-forest 114 

herbaceous or shrub vegetation cover, followed by a succession of young tree stages, ultimately 115 

returning to a forest class.  Traditional change detection methods using limited observations may 116 

not have identified these changes if data were collected with a starting date prior to the change 117 

and an ending date that occurred after the transitional (non-tree) vegetation returned to tree 118 

cover. Therefore, incorporating change information into the land cover characterization process 119 

allows for insights regarding expected land cover class transitions related to successional 120 

processes, and likewise provides a mechanism to identify illogical class transitions and cause or 121 

agent of change  (Kennedy et al., 2015; Wulder et al., 2018). The choice of a time series 122 
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approach also allows missing data and phenological variations to be handled robustly (Friedl et 123 

al., 2010; Wulder et al., 2018).  124 

The Continuous Change Detection (CCD) and Classification (CCDC) algorithm (Zhu and 125 

Woodcock, 2014b; Zhu et al., 2015b) was developed to advance time series change detection by 126 

using all available Landsat data. The CCD algorithm uses robust methodology to identify when 127 

and how the land surface changes through time. The algorithm first estimates a time series model 128 

based on clear observations and then detects outliers by comparing model estimates and Landsat 129 

observations. The algorithm fits harmonic regression models through a Least Absolute Shrinkage 130 

and Selection Operator (LASSO) (Tibshirani, 1996) approach to every pixel over time to 131 

estimate the time series model defined by sine and cosine functions. New Landsat records are 132 

compared to predicted results, and if the observed data deviate beyond a set threshold for all 133 

records within a moving window period, then a model break is produced. The parameters used to 134 

fit the model are used as inputs for the cover classifier for land cover characterization.  135 

The original implementation of CCDC was written in the MATLAB programming language and 136 

had been implemented for a regional land cover change assessment in the eastern CONUS (Zhu 137 

and Woodcock, 2014b). The algorithm includes the automation of change detection/classification 138 

and can monitor changes for different land cover types. The implementation of CCDC into a 139 

large geographic extent still encounters several challenges: the availability of Landsat records 140 

and training datasets, the effectiveness of choosing good quality Landsat records, and the 141 

robustness to characterize land cover and change across various land cover types and conditions. 142 

In this paper, we outlined major efforts and challenges in the implementation of CCDC for the 143 

U.S. Geological Survey (USGS) Land Change Monitoring, Assessment, and Projection 144 

(LCMAP) initiative (Brown et al., 2020). LCMAP focuses on using CCD/CCDC with time series 145 

Landsat records and other ancillary information to produce annual land cover and change 146 

products from 1985 to the present for the United States. We focused on how LCMAP employed 147 

every observation in a time series of U.S. Landsat Analysis Ready Data (ARD) (Dwyer et al., 148 

2018) over a long period starting with the 1980s to determine whether change occurred at any 149 

given point in the observation record. The algorithm was further used to classify the pixel to 150 

indicate what land cover type(s) were observed before and after a detected change on the land 151 

surface. The CCDC algorithm has since been translated into an open-source library as Python 152 
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code. The full implementation joined the CCD Python library with the classification 153 

methodology in combination with data delivery/processing services made available through the 154 

LCMAP Information Warehouse and Data Store (IW+DS).  155 

 156 

2 Data Sources 157 

The CCDC algorithm utilizes all available Landsat observations including surface reflectance, 158 

brightness temperature, and associated quality data to characterize the spectral responses of 159 

every pixel through harmonic regression model fits. The model fits are then used to categorize 160 

each pixel time series into temporal segments of stable periods and to estimate the dates at which 161 

the spectral time-series data diverge from past responses or patterns. The outcomes of model fits 162 

and other input data are then used for classification. The algorithm requires several input datasets 163 

to perform both change detection and classification. 164 

2.1 Landsat observations  165 

U.S. Landsat ARD have been processed to a minimum set of requirements and organized into a 166 

form that can be more directly and easily used for monitoring and assessing landscape change 167 

with minimal additional user effort. Landsat ARD Collection 1 provides consistent radiometric 168 

and geometric Landsat products across Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced 169 

Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) / Thermal 170 

Infrared Sensor (TIRS) instruments for use in time series analysis (Dwyer et al., 2018). Landsat 171 

ARD is organized in tiles, which are units of uniform dimension bounded by static corner points 172 

in a defined grid system (Fig. 1). An ARD tile is currently defined as 5,000 x 5,000 30-meter (m) 173 

pixels or 150 x 150-kilometer (km). To implement CCDC algorithms to produce LCMAP 174 

Collection 1.0 land change products in CONUS, all available Landsat ARD records of surface 175 

reflectance and brightness temperature from the 1980s to 2017 were required.  176 

2.2 Land cover and ancillary datasets 177 

The CCDC algorithm employs every observation in a time series of Landsat data to determine 178 

whether change has occurred at any given time. The algorithm further classifies the time series to 179 

indicate what land cover types were observed before and after a detected change and further to 180 

generate LCMAP annual land cover products (Table 1). The land cover products are produced by 181 
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using training data from NLCD in 2001. NLCD provides Anderson Level II (Anderson, 1976) 182 

land cover classification for CONUS and outlying areas (Homer et al., 2020). Spectral index and 183 

change metrics between cloud-corrected Landsat mosaics are used, among other information, to 184 

identify change pixels (Jin et al., 2013). These metrics allow NLCD to incorporate temporal and 185 

spectral trajectory information into both training data selection and final land cover 186 

classification. The NLCD land cover data is used in LCMAP as land cover training data.  187 

 188 

Ancillary data comprises two main source datasets: the USGS National Elevation Dataset (NED) 189 

(Gesch et al., 2002) 1 arc-second Digital Elevation Models (DEM), and a wetland potential index 190 

(WPI) layer created for NLCD 2011 land cover production (Zhu et al., 2016). The WPI layer is a 191 

ranking (0–8) of wetland likelihood from a comparison of the National Wetland Inventory 192 

(NWI), the U.S. Department of Agriculture Soil Survey Geographic Database (SSURGO) for 193 

hydric soils, and the NLCD 2006 wetlands land cover classes.  194 

 195 

3 Methodology 196 

As part of the operational LCMAP system, the original MATLAB version of the CCDC 197 

algorithm is converted to a format that meets the needs of large-scale land change detection and 198 

change characterization on an annual basis. Python is selected to replace MATLAB to implement 199 

the CCDC algorithm for LCMAP.  The CCD component of the CCDC algorithm is converted to 200 

create the Python-based CCD (PyCCD) library. The PyCCD library is a per-pixel algorithm, and 201 

the fundamental outputs are the spectral characterizations (segments) of the input data. There are 202 

several key components in PyCCD. The overall CCD procedures are summarized in Fig. 2. 203 

3.1 Data filtering and Harmonic modeling 204 

The removal of invalid and cloud-contaminated data points is important for deriving model 205 

coefficients that accurately represent the phenology of the surface, and for the correct 206 

identification of model break points. The CCD algorithm uses Landsat ARD PIXELQA values to 207 

mask observations identified as cloud, cloud shadow, fill, or (in some cases) snow derived based 208 

on the Fmask 3.3 algorithm (Zhu et al., 2015a; Zhu and Woodcock, 2012). Additional cirrus and 209 

terrain occlusion bits are provided for Landsat 8 OLI-TIRS ARD that are not available in the 210 
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Landsat 4–7 TM/ETM+ quality assessment band. To maintain consistency across the historical 211 

archive, the algorithm does not rely on these Landsat 8-only QA flags to filter out observations. 212 

Landsat ARD containing invalid or physically unrealistic data values are removed. For the 213 

surface reflectance bands, the valid data range is between 0 and 10000. Brightness temperature 214 

values, which in the ARD are stored as 10 × temperature (kelvin), are converted to 100 × °C and 215 

observations are filtered for values outside the range -9320 and 7070 (-93.2–70.7°C). This 216 

procedure rescales the brightness temperature values into a roughly similar numerical range as 217 

the surface reflectance bands. A multitemporal mask (Tmask) model (Zhu and Woodcock, 218 

2014a) is implemented first to remove additional outliers by using the multitemporal observation 219 

record to identify values that deviate from the overall phenology curve using a specific harmonic 220 

model to perform an initial fit to the phenology. Additional details are provided in the 221 

Supplementary materials S1. 222 

The filtered Landsat ARD is further operated to generate the time series fit by harmonic models 223 

whose sinusoidal components are frequency multiples of the base annual frequency. A constant 224 

and linear term characterizes the surface reflectance or brightness temperature offset value and 225 

overall slope, respectively. The full harmonic model is defined as follows:  226 

�̂�(𝑖, 𝑡) = 𝑐0,𝑖 +  𝑐1,𝑖 𝑡 + ∑ (𝑎𝑛,𝑖 cos 𝜔𝑛𝑡 + 𝑏𝑛,𝑖 sin𝜔𝑛𝑡)3
𝑛=1                                       (1) 227 

where ω is the base annual frequency (2π⁄T), t is the ordinal of the date when January 1 of the 228 

year zero has ordinal 1 (sometimes called Julian date), i is the ith Landsat band, an,i and bn,i are 229 

the estimated nth order harmonic coefficients for the ith Landsat band, c0,i and c1,i are the 230 

estimated intercept and slope coefficients for the ith Landsat band, and �̂�(𝑖, 𝑡) is the predicted 231 

value for the ith Landsat band at ordinal date t. Model initialization and certain special-case 232 

regression fits such as at the beginning/end of the time series use the simple four-coefficient 233 

model. Outside of these conditions, the selection of coefficient depends on the number of 234 

observations used for the regression. For a full model (eight coefficients), there must be at least 235 

24 observations covered by the regression. The fit parameters returned by PyCCD always 236 

include eight coefficient values including an intercept, with unused coefficients reported as 237 

zeroes.  238 

3.2 Regression models and change detection thresholds 239 
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The best-fit coefficients for the time series model are calculated using a LASSO regression 240 

model (Tibshirani, 1996). In contrast to Ordinary Least Squares (OLS) that was used in the 241 

original CCDC development, LASSO penalizes the sum of the absolute values of coefficients, in 242 

some cases forcing a subset of the coefficients to zero. Together with the explicit limits enforced 243 

on the number of coefficients, this reduces instances of overfitting, including in cases when 244 

observations are too sparse or unevenly distributed in time to constrain the model to real 245 

phenological features. To detect change, the LASSO model checks CCD model breaks with 246 

respect to its last determined best-fit harmonic model.  247 

To correctly detect change, the algorithm distinguishes between a substantive deviation from 248 

model prediction and deviations that result from variability inherent in the data (due to 249 

incomplete atmospheric removal and/or other sources of natural variation) to detect change. The 250 

algorithm calculates two parameters related to dispersion, or scatter, to estimate the variability of 251 

data for each spectral band. The first one is a comparison root-mean-square-error (RMSE) that is 252 

the RMSE of the 24 observations covered by the model which are closest in day of year to the 253 

last observation in the “peek window,” or over all observations covered by the model if there are 254 

fewer than 24. This value is recalculated at each step of the time series. The second parameter 255 

(var) is used to measure the overall variability of the data values and is defined as the median of 256 

the absolute value of the differences between each observation and the ith successive 257 

observation, where i is the smallest value such that the majority of these observation pairs are 258 

separated by greater than 30 days, if possible (otherwise, i=1). The var is computed once at the 259 

beginning of the standard procedure, using all non-masked observations in the time series. 260 

Observations not yet incorporated into the model are evaluated as a group of no fewer than the 261 

𝑃𝐸𝐸𝐾_𝑆𝐼𝑍𝐸 parameter value; this is the “peek window,” which “slides” along the time series 262 

one observation at a time. Each iteration, a value is calculated for each individual observation 263 

within the peek window, as follows: 264 

𝑚𝑎𝑔𝑛 =  ∑ (
𝑟𝑒𝑠𝑖𝑑𝑛, 𝑖

𝑚𝑎𝑥(𝑣𝑎𝑟𝑖 ,  𝑅𝑀𝑆𝐸𝑖 )
)

2

𝑖∈𝐷

 (2) 

where, 𝑟𝑒𝑠𝑖𝑑𝑛, 𝑖 is the residual relative to the LASSO models for each band 𝑖, for each 265 

observation 𝑛 within the 𝑃𝐸𝐸𝐾_𝑆𝐼𝑍𝐸 window, 𝑣𝑎𝑟𝑖 and 𝑅𝑀𝑆𝐸𝑖 are the parameters of dispersion 266 

as described above, for each band 𝑖. This summation is carried out for all bands 𝑖 in the set of 267 
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𝐷𝐸𝑇𝐸𝐶𝑇𝐼𝑂𝑁_𝐵𝐴𝑁𝐷𝑆 (𝐷). This produces a scalar magnitude, representing the deviation from 268 

model prediction across these bands, for each observation. The detection of a model break 269 

requires this value to be above the 𝐶𝐻𝐴𝑁𝐺𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 value for all observations in the 270 

window. This is separate from the value that is reported as a per-band magnitude when a change 271 

is detected in the time series. Change detection sensitivity depends on the value of change 272 

threshold. The 𝐶𝐻𝐴𝑁𝐺𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 is determined in Eqs. S2 and S3 in the Supplementary. 273 

If 𝑚𝑎𝑔𝑛 < 𝐶𝐻𝐴𝑁𝐺𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 for any 𝑛 in the 𝑃𝑒𝑒𝑘_𝑆𝑖𝑧𝑒 window, then add the most 274 

recent observation to the segment by shifting the 𝑃𝑒𝑒𝑘_𝑆𝑖𝑧𝑒 window one observation forward in 275 

the time series. If 𝑚𝑎𝑔𝑛 > 𝐶𝐻𝐴𝑁𝐺𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 for all 𝑛 in the 𝑃𝑒𝑒𝑘_𝑆𝑖𝑧𝑒 window, this is 276 

considered a spectral break.   277 

3.3 Permanent snow and insufficient clear observation procedures 278 

The permanent snow procedure indicates that too few clear (less than 25% of total observations) 279 

or water observations, which are identified from the QA band, exist to robustly detect change, 280 

and a large fraction of observations are snow. The algorithm will return at most one segment  that 281 

fits through the entire time series and provide the filtered observations number at least twelve. 282 

The model will, under the default settings, fit only four coefficients (i.e., characterizing the 283 

reflectance and brightness temperature bands using only a simple harmonic with no higher 284 

frequency terms). Unlike other procedures, snow pixels are not filtered out and are fit as part of 285 

the annual pattern. This avoids overfitting the model to a seasonally sparse observation record. 286 

Similarly, for the insufficient clear observations determined by the QA band, the model will 287 

perform a LASSO regression fit for the entire time series using four coefficients. The model 288 

coefficients and RMSE from this regression are recorded. Additional parameters including the 289 

start, end, and observation count are also saved. Further, the change Boolean value is set to 0, 290 

and the break day is recorded as the last observation date. The magnitude of change as zero for 291 

each band is also saved. 292 

3.4 Land cover classification 293 

The CCDC algorithm characterizes the land cover component of a pixel at any point using the 294 

LCMAP time series model approach from the Landsat 4–8 records. The classification of CCDC 295 

is accomplished for every pixel based on data from the time series models (e.g., model 296 
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coefficients). Land cover classifications are generated on an annual basis, using July 1st as a 297 

representative date. A list of land cover classes and descriptions is provided in Table 1.  298 

3.4.1 Classification algorithm 299 

We chose eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016) as the classification 300 

method. XGBoost is a scalable implementation of gradient tree boosting, which is a supervised 301 

learning method that can be used to develop a classification model when provided with an 302 

appropriate training dataset. Generally, for a given dataset, a tree ensemble model uses additive 303 

functions, which correspond to independent tree structures, to predict the land cover. The 304 

predictions from all trees are also normalized to the final class probabilities using the softmax 305 

function. The algorithm can handle sparse data and theoretically justify weighted quantile sketch 306 

for approximate learning. The resultant trained model can be applied to a larger dataset to 307 

generate predictions and probability scores which are the basis for LCMAP primary and 308 

secondary land cover types. The primary and secondary land cover confidence values are 309 

calculated from these scores. 310 

3.4.2 Training dataset 311 

The training data used in XGBoost for the LCMAP Collection 1.0 land cover products is from 312 

the USGS NLCD 2001 land cover product (Homer et al., 2020). To meet the LCMAP land cover 313 

legend, the NLCD data is first cross-walked to LCMAP classes, as shown in Fig.3 and Table 2. 314 

The extent of each land cover in the cross-walked NLCD layer is eroded by one pixel. This step 315 

aims to reduce potential noise in the classifier by removing pixels that may be heavily mixed 316 

with different cover types, or whose land cover label may be less reliable. It also removes the 317 

narrow linear low-intensity developed pixels corresponding to road networks, which were found 318 

to have registration issues with Landsat ARD in some areas. 319 

 320 

3.4.3 Ancillary data 321 

Ancillary data used in the classification contains two main datasets: the DEM and the WPI layer. 322 

Three DEM derivative datasets are implemented as geographic references for land cover 323 

classification as ancillary data including topographic slope, aspect, and position index. The WPI 324 
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is highly related to wetland distribution and has a potential to improve wetland classification in 325 

LCMAP. 326 

3.4.4 Classification procedures 327 

For each pixel, CCD segment data for the segment that includes the July 1st, 2001 date is used 328 

with training data to create classification models (Zhou et al., 2020; Zhu et al., 2016). The CCD 329 

model data used with training data include the model coefficients (except the intercepts) 330 

generated from surface reflectance and brightness temperature bands, the model RMSE value for 331 

each band, and an average intercept value that is calculated from average annual reflectance 332 

values for each band for the July 1, 2001 year. The model training procedure is conducted at the 333 

tile level, using random samples drawn from the targeted tile as well as the eight surrounding 334 

tiles to avoid not having enough training samples of rare land cover types in the targeted tile. 335 

Cross-walked and eroded NLCD data are used for classification labels, while the CCD model 336 

outputs and ancillary data are provided as independent variables. Based on training data testing 337 

using different sample sizes, a target sample size of 20 million pixels from the extent of 3x3 338 

ARD tiles is chosen, requiring approximately proportional representation of classes with the 339 

added constraint that no class be represented by fewer than 600,000 or more than 8 million 340 

samples. If there are fewer than 600,000 samples available for a class, then all of the available 341 

samples are used without any oversampling. The XGBoost hyperparameters are selected as: 342 

maximum tree depth 8; fast histogram optimized approximate greedy algorithm for tree method; 343 

multiclass logloss for evaluation metric; and maximum number of rounds 500.  344 

After the classification models in a given tile are trained, predictions are generated for each July 345 

1st date that has an associated CCD segment (Fig. 4). The prediction information is supplied to 346 

the production step for the creation of land cover. The process is repeated for each tile for the 347 

entire CONUS ARD extent. 348 

3.5 Validation data 349 

The LCMAP land cover product is validated using an independent reference dataset. The 350 

reference data, which consists of 24,971 30 m x 30 m pixels selected via a simple random 351 

sampling method over CONUS, is collected from these sample plots between 1985 and 2017. 352 

The TimeSync tool is used to efficiently display Landsat data for interpretation and to record 353 
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these interpretations into a database (Cohen et al., 2010; Pengra et al., 2020a). TimeSync displays 354 

the input Landsat images in two basic ways: by annual time-series images and by pixel values 355 

plotted through time. For the image display, single 255 x 255-pixel subsets of Landsat images in 356 

the growing season are displayed in sequence from 1984 to 2018. Trained interpreters have 357 

access to all available images in each year to collect attributes in three basic categories: 1) land 358 

use, 2) land cover, and 3) change processes. Additional attribute details for the change processes, 359 

such as clear-cut and thinning associated with harvest events, are also collected. The interpreters 360 

manually label these attributes using Landsat 5, 7, and 8 imagery, high-resolution aerial 361 

photography, and other ancillary datasets (Cohen et al., 2010; Pengra et al., 2020a). Interpreters 362 

also use ancillary data to support interpretation of Landsat and high-resolution imagery, although 363 

Landsat data takes the highest weight of evidence. Recording the full set of attributes in land use, 364 

land cover, and land change categories provides sufficient information to meet the needs of 365 

LCMAP as well as other potential users. Quality assurance and quality control (QA/QC) 366 

processes are also implemented to ensure the quality and consistency of the reference data 367 

among interpreters and over the time span of data collection (Pengra et al., 2020a). The collected 368 

samples are then cross-walked to the appropriate LCMAP land cover class, providing a single 369 

land cover reference label for each year of the time series for each sample pixel.  370 

The validation analysis protocols focus on estimating the confusion matrix and overall, user’s, 371 

and producer’s accuracy by comparing the reference data and product data labels. Overall 372 

accuracy and producer's accuracy as well as standard errors are produced using post stratified 373 

estimators (Card, 1982; Stehman, 2013). For accuracy estimates that are produced by combining 374 

multiple years of data, the sampling design is treated as a one-stage cluster sample where each 375 

pixel represents a cluster and each year of observation is the secondary sampling unit using 376 

cluster sampling standard error formulas (Pengra et al., 2020). The validation is only performed 377 

for primary land cover and change products, not for other LCMAP science products 378 

(Supplementary Section 4). 379 

3.6 Information warehouse and data store 380 

The LCMAP adopts an information warehouse and data store (IW+DS) system that can expand 381 

storage solutions along with data access and discovery services running on the EROS Shared 382 

Mesos Cluster. The system provides different storage solutions to allow for flexibility in 383 
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choosing what best fits a dataset’s characteristics and currently comprises Apache Cassandra 384 

(https://cassandra.apache.org/ ) and Ceph ( https://ceph.io/ ) object storage. The services provide 385 

data ingest, retrieval, discovery, metadata, processing, and other functionalities. LCMAP 386 

maintains a copy of Landsat Collection 1 ARD and other similarly tiled ancillary datasets that 387 

are spatially subset within the IW+DS to allow efficient retrieval and to enable large-scale 388 

CCDC processing and other algorithmic work. The ingest process is designed to avoid bringing 389 

in ARD tile observations that are already present within the IW+DS, to keep the input consistent 390 

with any prior usage while allowing CCDC to bring in new observations as they are available. 391 

Algorithmic results, products, and other intermediate data are kept on the Ceph object store 392 

arranged using a prefix structure to label the identity of the data, with the actual object names 393 

incorporating spatial concepts such as tile and chip that is a small subset of a tile and contains 394 

100 by 100 30m pixels. 395 

  396 

4 Results and Discussion 397 

 398 

The LCMAP primary land cover and change products were evaluated to outline annual land 399 

cover change from 1985 to 2017 in the conterminous Unites States. 400 

4.1 Collection 1.0 primary land cover distribution and change  401 

The CONUS primary land cover mapping result and the primary confidence in 2010 are shown 402 

in Fig. 5a and b, respectively. The land cover map illustrates distributions of different land cover 403 

types across CONUS. The primary confidence is above 90% for most land cover classes, 404 

suggesting that the classification models were created with high confidence for land cover 405 

mapping for most classes in most regions. Some vegetation transition (dark green in Fig. 5b) 406 

occurs mainly in the southeast region suggesting gradual tree recovery from disturbances 407 

associated with tree harvesting. Fig. 5c and d display numbers of land cover changes and spectral 408 

changes detected by the CCDC model between 1985 and 2017. The number of land cover 409 

changes represents how many times land cover has changed from one type to another for a 410 

specific pixel. However, the number of spectral changes denotes how many times the model has 411 

detected spectral changes in a CCD time series model where spectral observations have diverged 412 

from the model predictions. These changes could relate to a change in thematic land cover or 413 
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might represent more subtle conditional surface changes. The southeast region shows more 414 

frequent land cover changes in the 33 years (Fig. 5c). The western part of CONUS, however, 415 

contains more spectral changes than in the east. The different spatial patterns in the total number 416 

of land cover changes (Fig. 5c) and detected spectral changes (Fig. 5d) suggest that not all 417 

changes lead to land cover change (e.g., drought and precipitation-related changes in vegetation 418 

or grassland fire). The large numbers of spectral change were mainly detected in the southern 419 

grassland area. 420 

Fig. 6 shows the temporal changes of areas for eight land cover classes from 1985 to 2017. 421 

Among all classes, grass/shrub, tree cover, and cropland were dominant land cover types, 422 

followed by wetland, water, developed, barren, and snow/ice. The land cover and change 423 

datasets show that developed land has a consistent increasing trend with an 8.4% increase while 424 

barren increased 9.1% between 1985 and 2017. Overall, the developed and barren areas 425 

increased 2.58×104 km2 and 8.56×103 km2, respectively. Other land cover categories do not have 426 

such increasing patterns. As for water, although fluctuating, it had a generally increasing trend. 427 

The area of wetland had a rapid decrease before 2000, following a relatively steady though 428 

fluctuating trend. Net wetland extent declined about 0.4% from 1985 to 2017. The grass/shrub 429 

and tree cover classes both experienced consistent increasing trends before 2008 and 1995 with 430 

areas reaching about 2.85×106 km2 for grass/shrub and 2.14×106 km2 for tree in these two years 431 

These two land covers gradually decreased since then. Tree cover declines after 1996, showing a 432 

decreasing rate of 2.8% between 1985 and 2017. The cropland decreased from 1985 to 2008 and 433 

quickly increased after that. By 2017, the area of cropland reached a similar level of cropland 434 

area in 1988. Furthermore, most land cover changes are located in the southeast region where 435 

many pixels change more than one time. The changes detected by the CCD model suggest that 436 

landscape in the Midwest and west are more dynamic than in the east. Many areas experience 437 

multiple disturbances although most of these changes do not result in land cover transition. 438 

The south ARD tile outlined in Fig. 5(a) covers the northern Dallas region, and the spatial 439 

patterns of land cover and change are shown in more detail in Fig. 7. The land cover distributions 440 

in the region show that urban land expands considerably from 1985 (Fig. 7a), to 1990 (Fig. 7b), 441 

and to 2016 (Fig. 7c). The land conversion was primarily from cropland and grass/shrub to 442 

developed land. Lake Ray Roberts was created in the late 1980s and captured in the land cover 443 
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map (Fig. 7b&c). The lake and urban conversion are also visible in the change count from 1985 444 

to 2016 (Fig. 7g), which mainly show as blue, suggesting a one-time conversion. On the other 445 

hand, there is almost no change in the urban center (Fig. 7g). Fig. 7 (d-f) shows high 446 

classification confidence at the urban center, water, grass/shrub, and tree cover areas, whereas 447 

cropland has relatively low confidence, indicating frequent management activities over croplands 448 

in the regions. The total pixels of different change numbers suggest that one to two change times 449 

are dominant, although some pixels change more than three times (Fig. 7h). The land cover 450 

distributions in 1985, 1990, and 2017 show an increase in developed land and decreases in 451 

cropland and grass/shrub (Fig. 7i). 452 

The spatial patterns of land cover and change in the north ARD tile displayed in Fig. 5(a) in 453 

northern Wyoming are shown in Fig. 8. The tile covers most of Yellowstone National Park, in 454 

which tree, grass/shrub, and water are three dominant land cover types. Land cover in 1985, 455 

1990, and 2016 (Fig. 8a-c) changed from tree to grass/shrub and back to tree cover. The primary 456 

land cover confidence layers exhibit changes as decreasing vegetation from tree to grass/shrub 457 

and increasing vegetation from grass/shrub to tree (Fig. 8d-f). For those trees and water bodies 458 

that did not experience any disturbances, their magnitudes of confidence are relatively large. The 459 

change map suggests that most forest lands experienced at least one change and some areas 460 

changed multiple times (Fig. 8g). Most changes in forest lands were related to wildland fires that 461 

occurred in the region. In 1988, 50 fires burned a mosaic covering nearly 3213 km2 in 462 

Yellowstone as a result of extremely warm, dry, and windy weather (NPS, 2021). Trees regrew 463 

in some of the burn areas and these changes could occur more than once as shown in the change 464 

map that indicates at least two changes in these areas. The total pixels of different change 465 

frequencies suggest that one to two changes were dominant and very few pixels changed more 466 

than three times (Fig. 8h). The land cover distributions in 1985, 1990, and 2017 had increases in 467 

grass/shrub after 1985 and reductions in tree cover after that (Fig. 8i). 468 

4.2 Validation of land cover product  469 

The overall accuracy between the annual reference land cover label and the LCMAP annual land 470 

cover products was calculated as 82.5% (±0.22%, standard error) when summarized for all years.  471 

Overall accuracy across the time series (1985-2017) varied within about 1.5% annually, ranging 472 

from a high of 83% in the late 1990s to about 82% in the late 2010s (Fig. 9). Per class accuracies 473 
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across CONUS ranged between 43% and 96% for user’s accuracy (Table 3), with water showing 474 

the highest accuracy (96% ±0.5% user’s accuracy and 93% ±0.7% producer’s accuracy). 475 

Cropland has about 93% (±0.3%) producer’s accuracy and 70% (±0.6%) user’s accuracy. The 476 

lowest accuracies are observed for barren and wetland. The per class per year agreements show 477 

the accuracies vary slightly for each class in each year (Table 4).  478 

4.3 Significance of the product 479 

One of the biggest advances of LCMAP relative to conventional methods available to date is its 480 

approach of generating annual land change products by using the entire Landsat archive at a 481 

large geographic scale. Landsat ARD, which is the foundation for LCMAP, is effective and 482 

straightforward for tracking and characterizing the historical land changes at a pixel level over 483 

decades. Compared to conventional methods, detecting changes using all available observations 484 

enables us to date these changes as they occur. After change is detected, temporally consistent 485 

land cover products rather than stochastic changes in labels can be produced at annual intervals 486 

by conducting classification from CCD model segmented contributions 487 

The LCMAP product suite includes five land cover change and five land surface change science 488 

products. It represents a new paradigm that consistently and continuously provides a large 489 

volume of land change information for land change monitoring, land resource management, and 490 

scientific research. In addition to primary and secondary land cover before and after changes, 491 

change segments containing spectral change time and magnitude are provided to explore the 492 

changes in land condition and could meet various user communities’ needs. The LCMAP 493 

products can improve our understanding of causes, rates, and consequences of the land surface 494 

changes (Rover et al. 2020) such as forest changes caused by wildfire and insect outbreaks. 495 

By implementing the CCDC algorithm through a system engineering approach, LCMAP 496 

provides a fully automated framework for land change monitoring. The framework can also be 497 

updated to include the latest Landsat records so that it can be used for operational continuous 498 

monitoring in a large geographic extent (Brown et al. 2020). Therefore, when new observations 499 

become available, the framework can provide timely and consistent land cover characteristics to 500 

the public. 501 

4.4 Limitations and challenges 502 
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Although LCMAP Collection 1.0 products have been proven to be successful in detecting 503 

various land surface changes to support research applications related to environment and ecology 504 

conditions, limitations and challenges exist. Utilizing Landsat ARD data as input provided 505 

consistent time series Landsat imagery with high level geometric and radiometric quality for 506 

implementing the CCDC method. Nevertheless, the densities of Landsat observation records 507 

varied greatly across space and time due to spatial differences in Landsat scene overlap and 508 

temporal coverage, as well as regional differences in contamination by clouds, cloud shadows, 509 

and snow. The change detection accuracies of CCD models were highly influenced by the 510 

temporal frequency of available observations. Zhou et al. (2019) found that using harmonized 511 

Landsat-8 and Sentinel-2 (HLS) data increased the temporal frequency of the data and thus 512 

enhanced the ability to model seasonal variation and derived better change detection results than 513 

using Landsat data alone. Integrating multi-mission data could provide the opportunity to 514 

enhance change detection, especially for the land cover types that are highly dynamic or in 515 

frequently cloudy/snowy areas.  516 

Providing only eight general land cover classes and their changes in LCMAP Collection 1.0 517 

products limits the usage of the product in some applications that need a higher level of thematic 518 

land cover detail. For example, shrub and grass are two major vegetation types and have 519 

different ecological functions but they are not delineated separately in LCMAP Collection 1.0 520 

products. Lack of measurement of grassland-shrub transition constrains the study of shrub 521 

encroachment, which is a symptom of land degradation. 522 

Adopting NLCD 2001 as the training data source efficiently provided abundant training samples 523 

to deliver land cover product with high classification accuracy. However, these training data 524 

were randomly selected from the NLCD land cover product, suggesting errors could potentially 525 

be carried over to the training samples due to potential errors in the training source. Besides 526 

uncertainties in training data, some obvious challenges such as class definitional differences 527 

between pasture/hay and grassland between NLCD and LCMAP could potentially be carried 528 

over to the LCMAP land cover product. Implementing training data by reducing uncertainties 529 

and potential errors in a more consistent and accurate way is critical to strengthen land cover 530 

classification and to improve the scientific quality of LCMAP products in the future. 531 
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There are apparent shifts in some land cover types, especially in snow/ice and barren (Fig.6), and 532 

a decline in overall agreement (Fig.9) in 2017, the last year of the Collection 1.0 product. The 533 

last year’s product usually is provisional because limited Landsat observations are available at 534 

the end of a time series. The CCDC requires at least 24 clear observations to create full models 535 

for change detection and classification. Without sufficient clear observations, the algorithm 536 

could not produce model break accurately. Therefore, in the last year of a time series, the rule-537 

based assignment is implemented to label land cover for these pixels that do not have enough 538 

observations to build a time series model. Both primary and secondary land cover classes are 539 

assigned from the last identified primary and secondary classes.  540 

 541 

5 Data Availability 542 

The LCMAP products generated in this paper are available at https://earthexplorer.usgs.gov/ 543 

(LCMAP, 2021). All LCMAP land change products are mosaiced for the conterminous United 544 

States in the GeoTIFF format. Find exact data as described here at 545 

https://doi.org/10.5066/P9W1TO6E. The reference dataset used for the product validation is also 546 

available at https://www.sciencebase.gov/catalog/item/5e57e965e4b01d50924a93f6 547 

or  https://doi.org/10.5066/P98EC5XR (Pengra et al., 2020b).  548 

 549 

6 Conclusions 550 

The continuous Landsat observations spanning from the 1980s to the present, new generations of 551 

change detection and classification models, and systems capable of processing large volume data 552 

are offering unprecedented opportunities to characterize land cover and detect land surface 553 

change consistently and accurately. Additionally, the collection of reference data used to validate 554 

land cover products provides validation result for each land cover category annually. To capture 555 

the variability of landscape condition and its responses to different disturbances, land cover and 556 

land surface change datasets need to be produced over a large geographic scale. The LCMAP has 557 

produced a suite of land change product in 30 m resolution including the reference dataset in the 558 

United States. In that context, LCMAP was developed to generate an essential dataset to meet 559 

broad scientific research and resource management needs. Using the CCDC algorithm and 560 
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Landsat ARD to determine whether change has occurred at any given point in the observation 561 

record, LCMAP produced annual land cover and change datasets for the conterminous United 562 

States in a robust manner. These new datasets and the novel production systems will allow for 563 

new generation of research and applications in connecting time series remote sensing 564 

observations with land surface change at a much finer scale than previously possible.  565 
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Caption of Table 

Table 1 LCMAP land cover product specifications 

Table 2 NLCD land cover cross-walked to LCMAP land cover 

Table 3. Confusion matrix for CONUS (all years combined) where cell entries represent percent 

of CONUS area. Overall accuracy is 82.5% (±0.22%). Standard errors for user's and producer's 

accuracies are shown in parentheses and n is the number of sample pixels for each row and 

column. 

Table 4 Overall per class agreement in percentage between 1985 and 2017 

 

Caption of Figure 

Figure 1 Landsat ARD tile grids for the conterminous U.S. 

Figure 2 Overall procedures of the CCD algorithm. 

Figure 3. Figure 3. NLCD 2001 land cover (a), cross-walked LCMAP land cover classes (b), 

LCMAP land cover eroded by one pixel (c), zoomed in cross-walked land cover from NLCD 

2001 (d), and zoomed in LCMAP land cover classes eroded by one pixel (e). The color legends 

represent NLCD land cover class and LCMAP primary land cover (LCPRI).  

Figure 4 CCD change detection and segmentation using Landsat blue, green, red, near-infrared, 

short-wave infrared (SWIR) 1, short-wave infrared (SWIR) 2, and thermal bands. Blue dots are 

all available clear Landsat records in each year. The horizontal lines in different colors represent 

land cover classes labeled by the algorithm. The vertical lines show model break dates. The back 

line is the model fits. The high-resolution images show landscape conditions in 2007 and 2013.  

Figure 5 Illustration of the LCMAP product: (a) Primary land cover in 2010, (b) Primary land 

cover confidence in 2010, (c) total number of land cover changes from 1985 to 2017, and (d) 

total number of changes detected from 1985 to 2017. 

Figure 6 Areal variations of eight primary land cover types from 1985 to 2017 in CONUS. 

Figure 7 Primary land cover and confidences in 1985 (a) and (d), 1990 (b) and (e), 2016(c) and 

(f), change in 1985-2017 (g), total pixels of different change (h), and areas of different land 

cover in the three times for the ARD tile 16_14 (i). 

Figure 8 Primary land cover and confidences in 1985 (a) and (d), 1990 (b) and (e), 2016 (c) and 

(f), and change in 1985-2017 (g), total pixels of different change (h), and areas of different land 

cover in the three times for the ARD tile 9_6 (i). 

Figure 9 Overall agreement between LCMAP primary land cover and reference data across 

CONUS. The cross lines represent +/- one standard errors.  
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Table 1 LCMAP land cover product specifications 

Code Land Cover Class Description 

1 Developed Areas of intensive use with much of the land 

covered with structures (e.g., high-density 

residential, commercial, industrial, mining, or 

transportation), or less intensive uses where 

the land cover matrix includes vegetation, bare 

ground, and structures (e.g., low-density 

residential, recreational facilities, cemeteries, 

transportation/utility corridors, etc.), including 

any land functionality related to the developed 

or built-up activity. 

2 Cropland 

  

Land in either a vegetated or unvegetated state 

used in production of food, fiber, and fuels. 

This includes cultivated and uncultivated 

croplands, hay lands, orchards, vineyards, and 

confined livestock operations. Forest 

plantations are considered as forests or 

woodlands (Tree Cover class) regardless of 

the use of the wood products. 

3 Grass/Shrub Land predominantly covered with shrubs and 

perennial or annual natural and domesticated 

grasses (e.g. pasture), forbs, or other forms of 

herbaceous vegetation. The grass and shrub 

cover must comprise at least 10% of the area 

and tree cover is less than 10% of the area. 

4 Tree Cover Tree-covered land where the tree cover 

density is greater than 10%. Cleared or 

harvested trees (i.e. clearcuts) will be mapped 

according to current cover (e.g. Barren, 

Grass/Shrub). 

5 Water Bodies Areas covered with water, such as streams, 

canals, lakes, reservoirs, bays, or oceans. 

6 Wetland Lands where water saturation is the 

determining factor in soil characteristics, 

vegetation types, and animal communities. 

Wetlands are composed of mosaics of water, 

bare soil, and herbaceous or wooded vegetated 

cover. 

7 Ice and Snow  Land where accumulated snow and ice does 

not completely melt during the summer period 

(i.e. perennial ice/snow). 

8 Barren Land comprised of natural occurrences of 

soils, sand, or rocks where less than 10% of 

the area is vegetated. 

https://doi.org/10.5194/essd-2021-202

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 August 2021
c© Author(s) 2021. CC BY 4.0 License.



26 

 

Table 2 NLCD land cover cross-walked to LCMAP land cover 

NLCD Value LCMAP 

Value 

Water  Water 

Ice/Snow Ice and Snow 

Developed, open space; Developed, low intensity; Developed medium 

intensity; Developed, high intensity 

Developed 

Barren Barren 

Deciduous forest, Evergreen forest, Mixed forest Tree Cover 

Shrub/Scrub, Grassland/Herbaceous Grass/Shrub 

Hay/Pasture, Cultivated crops Cropland 

Woody wetland, Emergent herbaceous wetland Wetland 
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Table 3. Confusion matrix for CONUS (all years combined) where cell entries represent percent 

of CONUS area. Overall accuracy is 82.5% (±0.22%). Standard errors for user's and producer's 

accuracies are shown in parentheses and n is the number of sample pixels for each row and 

column. 

 

Map  Devel
. 

Crop. Grass 
/Shrub 

Tree Water Wetland Ice/ 
Snow 

Barren Total User 
(SE) 

  n   

Devel. 3.000   0.139 0.321 0.377 0.024 0.035  0.001 3.896 77 
(1.2) 

32102 

Crop. 0.918 16.527 5.061 0.799 0.027 0.368  0.003 23.702 70 

(0.6) 

195283 

Grass 
/Shrub 

0.368 0.757 30.649 2.599 0.045 0.229  0.332 34.980 88 
(0.3) 

288197 

Tree 0.340 0.143 1.414 23.387 0.049 0.579  0.006 25.917 90 
(0.3) 

213531 

Water 0.013 0.008 0.048 0.024 4.788 0.067  0.020 4.968 96 

(0.5) 

40932 

Wetland 0.062 0.129 0.361 0.944 0.172 3.688  0.001 5.357 69 
(1.3) 

44136 

Ice/Sno
w 

  0.004 0.004  0.004 0.012 0.004 0.028  43 
(18.7) 

231 

Barren 0.072 0.005 0.501 0.013 0.056 0.012   0.492 1.151 43 
(2.8) 

9485 

Total 4.772 17.707 38.358 28.149 5.162 4.981 0.012 0.859 100.00   

Prod 

(SE) 
63  

(1.3) 

93  

(0.3) 

80  

(0.4) 

83  

(0.4) 

93  

(0.7) 

74 

 (1.2) 

100 

(0) 

57  

(3.2) 

   

n 39319 145886 316027 231916 42530 41042 99 7078    
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Table 4 Overall per class agreement in percentage between 1985 and 2017 

Overall Per 
Class 

Agreement 
Developed Cropland Grass/Shrub Tree Water Wetland Snow/Ice Barren 

1985 66 80 83 87 95 72 60 49 
1986 67 80 83 87 95 72 60 49 

1987 68 80 83 86 95 72 60 49 
1988 68 80 83 87 95 72 60 49 
1989 68 80 84 87 95 72 60 48 
1990 68 80 84 87 95 72 60 48 
1991 68 80 84 87 95 72 60 49 
1992 69 80 84 87 95 71 60 50 

1993 69 80 84 87 95 71 60 49 
1994 69 80 84 87 95 71 60 49 
1995 70 80 84 87 95 72 60 49 
1996 69 80 84 87 95 72 60 48 
1997 70 80 84 87 95 72 60 49 
1998 70 80 84 87 94 72 60 48 

1999 70 80 84 87 95 72 60 48 
2000 70 80 84 87 95 72 60 48 
2001 70 80 84 87 95 72 60 49 
2002 70 80 84 86 95 72 60 49 
2003 70 80 84 87 94 71 60 48 
2004 69 80 84 86 94 71 60 48 

2005 70 80 84 86 94 71 60 49 
2006 70 79 84 86 94 71 60 49 
2007 70 79 84 86 94 71 60 50 
2008 70 79 84 86 94 71 60 49 
2009 70 79 84 86 94 71 60 49 
2010 70 79 84 86 94 71 60 50 

2011 70 79 84 86 94 71 60 51 
2012 70 79 83 86 94 71 60 50 
2013 69 79 83 86 94 71 60 50 
2014 69 79 83 86 94 71 60 50 
2015 69 79 83 86 94 71 60 50 
2016 69 79 83 86 94 71 60 50 

2017 69 78 83 85 94 70 60 49 

 

 

 

 

 

 

 

 

https://doi.org/10.5194/essd-2021-202

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 13 August 2021
c© Author(s) 2021. CC BY 4.0 License.



29 

 

 

Figure 1 Landsat ARD tile grids for the conterminous U.S. 
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Figure 2 Overall procedures of the CCD algorithm. 
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Figure 3. NLCD 2001 land cover (a), cross-walked LCMAP land cover classes (b), LCMAP land 

cover eroded by one pixel (c), zoomed in cross-walked land cover from NLCD 2001 (d), and 

zoomed in LCMAP land cover classes eroded by one pixel (e). The color legends represent 

NLCD land cover class and LCMAP primary land cover (LCPRI).  
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Figure 4 CCD change detection and segmentation using Landsat blue, green, red, near-infrared, 

short-wave infrared (SWIR) 1, short-wave infrared (SWIR) 2, and thermal bands. Blue dots are 

all available clear Landsat records in each year. The horizontal lines in different colors represent 

land cover classes labeled by the algorithm. The vertical lines show model break dates. The back 

line is the model fits. The high-resolution images show landscape conditions in 2007 and 2013.  
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Figure 5 Illustration of the LCMAP product: (a) Primary land cover in 2010, (b) Primary land 

cover confidence in 2010, (c) total number of land cover changes from 1985 to 2017, and (d) 

total number of changes detected from 1985 to 2017. 
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Figure 6 Areal variations of eight primary land cover types from 1985 to 2017 in CONUS. 
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Figure 7 Primary land cover and confidences in 1985 (a) and (d), 1990 (b) and (e), 2016(c) and 

(f), change in 1985-2017 (g), total pixels of different change (h), and areas of different land 

cover in the three times for the ARD tile 16_14 (i). 
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Figure 8 Primary land cover and confidences in 1985 (a) and (d), 1990 (b) and (e), 2016 (c) and 

(f), and change in 1985-2017 (g), total pixels of different change (h), and areas of different land 

cover in the three times for the ARD tile 9_6 (i). 
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Figure 9 Overall agreement between LCMAP primary land cover and reference data across 

CONUS. The cross lines represent +/- one standard errors.  
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